

RESOURCES FOR "HSC-I BOTANY" ZUEB EXAMINATIONS 2021

@copyright ZUEB

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from <u>www.zueb.pk</u> to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

1. Extended Response Questions (ERQs)

HOW TO ATTEMPT ERQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

SECTION C (LONG ANSWER QUESTIONS)

1. Draw and describe the life cycle of Zygomycota or Ascomycota fungi

@copyright ZUEB

S.NO	ERQ	ANSWER	CL	DL
1.		LIFE CYCLE OF MOSS	K/A	Μ
-		The moss belongs to bryophytes, therefore its main plant body		
		is gametophyte which is haploid (N) in		
		nature and it performs sexual reproduction.		
		SEXUAL REPRODUCTION:		
		In Moss the male reproductive organs are called Antheridia		
		while female reproductive organs are called		
		Archegonia.		
		Antheridia:		
		□ Antheridia develop on the apical portion of main axis of male		
		thallus.		
		□ They are found in clusters and their clusters are surrounded		
		by paraphysis (hairy structures).		
		□ Each antheridium has a swollen part which has a basal		
		multicellular stalk.		
		□ It is surrounded by a jacket layer. Inside this layer many		
		antherozoid mother cells are found.		
		□ These cells develop into biflagellated male gametes which		
		are known as antherozoids.		
		□ When antherozoids become mature, the jacket layer ruptures		
		and the antherozoids are set free,		
		which swim in water and try to reach the archegonium.		
		Archegonia:		
		Archegonia develop at the apex of female thallus in the form		
		of cluster.		
		□ Each archegonium is a flask-shaped body which has an upper		
	Explain the life cycle of	neck and a lower venter.		
		□ Inside the neck few neck canal cells are found, while the		
	Moss (No diagram	venter contains only one venter canal cell		
	required)	and an egg cell.		
		\Box The upper part of the neck consists of thin walled cells,		
		which are known as cover cells or lid cells.		
		Fertilization:		
		\Box At the time of fertilization all the neck canal cells and venter		
		canal cell are degenerated and form		
		mucilage inside the archegonium.		
		□ This mucilage applies a pressure on cover cells which		
		ultimately leave their places, so the		
		mucilage starts to release.		
		□ The mucilage attracts the antherozoids towards the		
		archegonium. In this way many		
		antherozoids enter into the archegonium but only one is		
		succeeded to combine with egg cell		
		to form diploid (2N) zygote or Oospore.		
		ASEXUAL REPRODUCTION:		
		□ The diploid (2N) Oospore forms the sporophyte of Moss,		
		which is attached with the		
		female gametophyte.		
		□ The sporophyte of Moss consists of following three parts.		
		1. FOOT : It is the basal part of sporophyte which remains		
		embedded inside the gametophyte.		
		It absorbs water and minerals from gametophyte.		
		2. SETA : It is a long stalk which connects the foot with the		
		capsule. 3. CAPSULE: It is the most		
		important part of sporophyte, in which a spore sac is found.		

	mother cells.Each cell forms haploid (N) spores by meiosis. After germination these spores form haploid gametophytes of moss.		
2. Describe adaptive characteristics of Bryophytes to land habitat.	gametophytes of moss.	K/R	

3.	Describe in detail the	GLYCOLYSIS	K/A	E
	process of Glycolysis	• The process in which a glucose molecule is converted into two		
		Pyruvic acids is called Glycolysis.		
		• This process takes places in the cytosol of cytoplasm.		
		• This is the anaerobic stage of cellular respiration.		
		• It was first explained by Embden, MeyerHof and Parnas,		
		therefore it is also called EMP pathway.		
		THIS PROCESS IS COMPLETED IN THE		
		FOLLOWING STEPS.		
		• Glucose is converted into Glucose 6-Phosphate in the		
		presence of Hexokinase enzyme. ATP is		
		consumed to from ADP.		
		$Glucose + ATP \longrightarrow Glucose 6-P + ADP$		
		• Now Glucose 6-Phosphate is converted into Fructose 6-		
		Phosphate in the presence of Phosphoglucoisomerase enzyme.		
		$Glucose 6-P \longleftrightarrow Fructose 6-P$		
		• Fructose 6-Phosphate is converted into Fructose 1,6-		
		diphosphate in the presence of		
		Phosphofructokinase enzyme. ATP is also converted into ADP.		
		Fructose 6-P + ATP> Fructose 1,6-diphosphate + ADP		
		• Fructose 1,6-diphosphate splits into two components,		
		dihydroxyacetone phosphate (DHAP) and 3		
		phosphoglyceraldehyde (3PGAL) by the action of Aldolase		
		enzyme. DHAP and 3 PGAL are the isomers		
		of each other and they are interchangeable by isomerase		
		enzyme. Fructose 1,6-di.P DHAP		
		• 3 PGAL is converted into 1,3-diphosphoglyceric acid, NAD+		
		is changed into NADH + H+. One		
		phosphate is also released.		
		$3 PGAL + NAD + \longleftrightarrow 1, 3 - DiPGA + NADH + H + Pi$		
		• 1,3-diphosphoglyceric acid is converted into 3-		
		phosphoglyceric acid by the action of		
		phosphoglycerokinase enzyme. ADP is change into ATP.		
		$1,3 \text{-}DiPGA + ADP \longleftrightarrow 3\text{-}PGA + ATP$		
		• 3-Phosphoglyceric acid is converted into 2-Phosphoglyceric		
		acid by the action of		
		phosphoglyceromutase enzyme.		
		3-PGA \leftrightarrow 2-PGA		
		• 2-Phosphoglyceric acid is converted into Phosphoenol Pyruvic acid in the presence of Enolase enzyme.		
		H2O is also released.		
		$2-PGA \longleftrightarrow Phosphoenol pyruvic acid + H2O$		
		Now finally phosphoenol pyruvic acid is converted into		
		pyruvic acid by the action of enzyme		
		phosphopyruvate kinase. ADP is converted into ATP.		
		Phosphoenol pyruvic acid + ADP		
		ATP		

4.	Light independent	DARK REACTION	K/A	Μ
	reaction (C3 cycle) of	Introduction: This process takes place in the stroma of a		
	photosynthesis.	chloroplast and it does not require light		
		energy therefore it is also known as light independent reaction.		
		The other names of the dark reaction are		
		Calvin-Benson or reductive pentose cycle.		
		Explanation: The Calvin cycle consists of 13 main		
		reactions which are catalyzed by 11 enzymes.		
		The C3 cycle is divided into three distinct phases;		
		i. Carboxylation: It is also called fixation of CO2 into organic molecules. In this process ribulose		
		1,5- bisphosphate (RuBP) is combined with atmospheric CO2 in		
		this presence of ribulose bisphosphate		
		carboxylase / oxygenase (Rubisco) to produce an unstable six-		
		carbon compound which breaks into two		
		molecules of glycerate 3-phosphate (G3P).		
		$3CO2 + 3RuBP \longrightarrow Rubisco G3P$		
		ii. Reduction: In these reactions phosphoglyceraldehyde		
		(PGAL) OR 3-phoshpoglyceraldehyde		
		(GA3P) is formed by the reduction of organic molecules.		
		During this phase G3P is reduced to glycerate 1,3-		
		bisphosphate (G1,3P) and then triose phosphate i.e. 3-		
		phoshpoglyceraldehyde (GA3P) and dihydroxyacetone phosphate (DHAP).		
		$6G3P + 6ATP + 6NADPH \longrightarrow 6GA3P + 6ADP +$		
		6NADP + 6Pi		
		iii. Regeneration: Many carbon-rearrangements takes place during this phase. Three carbon		
		compounds are rearranged to form 5-carbon units including the		
		primary acceptor molecule i.e. RuBP.		
		3 5GA3P + 3 ATP \longrightarrow 3RuBP + 3ADP +2P		
		Above reactions can be described by the following steps.		
		• Ribulose 5-phosphate is converted into Ribulose 1,5-		
		diphosphate or ribulose bisphosphate (RuBP),		
		in this reaction one ATP is consumed.		
		• Ribulose bisphosphate combines with CO2 to form a six		
		carbon containing unstable compound in		
		the presence of ribulose bisphosphate carboxylase/oxygenase (Rubisco) enzyme. This unstable		
		compound splits into two 3-carbon containing compounds		
		which are called 3-phosphoglyceric acid (3		
		PGA) or glycerate 3-phosphate (G3P).		
		• 3 PGA is combine with ATP to form 1,3-Diphosphoglyceric		
		acid.		
		• 1,3-Diphosphoglyceric acid is combined with NADPH+H+ to		
		form 3-phosphoglyceraldehyde		
		(3PGAL) or glyceraldehydes 3-phosphate(GA3P).		
		• 3 PGAL is considered as a first stable compound of dark		
		reaction and it can be utilize in the cycle		
		by different ways.		
		I. 3-PGAL reacts with Dihydroxyacetone phosphate and form		
		fructose 1,6-diphosphate, release one of its phosphate to form fructose 6-phosphate.Then fructose 6-		
		phosphate is converted into Glucose and		
		when many molecules of glucose are combined Starch is		
		produced.	1	1

		 II. 3-PGAL is combined with fructose 6-phosphate to form Erythrose 4-P and Xylulose 5-P. III. 3-PGAL reacts with Erythrose 4-phosphate to form Sedoheptulose 1,7-diphosphate. Sedoheptulose 1,7-diphosphate is converted into Sedoheptulose 7-P by releasing one of its phosphate. IV. 3-PGAL is combined with sedoheptulose 7-phosphate to form Ribose 5-phosphate and Xylulose 5- phosphate. Ribose 5-phosphate is converted into Ribulose 5-phosphate by the action of Isomerase enzyme. Xylulose 5-phosphate is also converted into Ribulose 5- phosphate by the action of Epimerase enzyme. 		
5.	Define Ascent of sap. Describe root pressure theory and cohesion- tension theory	ASCENT OF SAP The upward movement of water and dissolved substances (sap) from the lower parts towards the upper parts of a plant is called ascent of sap. MECHANISM OF ASCENT OF SAP: Inside the xylem vessels water and dissolved minerals flow upward at a rate of 15 meters per hour. Following theories try to explain this movement. i- Root pressure theory: ii- Transpiration pull theory OR Adhesion – cohesion – tension theory OR Dixon's theory of cohesion.	K/A	E
		 i. ROOT PRESSURE THEORY: Introduction: This theory was present by Stephen Hales in 1727. According to hales, this force could be responsible for raising water to a height of 6.4 meters. Explanation: In the stem of a potted plant is cut little above the soil, the cut end dip in water exudes water for some time, suggesting that there is a force pushing water up to the stem from roots. This force is known as root pressure. Objections: This is an insufficient force. 		
		 • This is an insufficient force. • Many tall trees do not generate root pressure. ii: TRANSPIRATION PULL THEORY: Introduction: This theory was presented by Dixon and Jolly. According to this theory; the transport of water over a long distance, the plants do not use their metabolic energy (No vital force is involved). Forces like adhesion, cohesion and evaporating effect of sunlight are mainly responsible for upward 		

		sap is solar powdered. Explanation: Sunlight raises temperature of leaves so the water beings to evaporate from moist walls of mesophyll cells. The evaporated water is immediately replaced from water inside the cell. This is replaced with the water from neighboring cell deeper in the leaf. Ultimately, water is pulled from xylem to meet the loss of water. Thus water in xylem is placed under tension which is transmitted to root through vessels. This downward transmission of tension is because of cohesive property of water columns in vessels and tracheids. Water column moves upward by mass flow due to transpiration pull.		
6.	Define Transpiration and its types. Describe mechanism of stomatal transpiration.	 TRANSPIRATION The loss evaporation of water from the aerial parts of a plant in the form of vapours is called transpiration. TYPES OF TRANSPIRATION There are two main types of transpiration Lenticular transpiration Foliar transpiration The transpiration by the lenticels of old stem is called lenticular transpiration. Lenticels are longitudinal pores, on stem which are produced during the secondary growth. FOLIAR TRANSPIRATION: The transpiration by the leaves is called foliar transpiration. There are two types of this transpiration. Cuticular transpiration CUTICULAR TRANSPIRATION The transpiration by the leaves is called foliar transpiration. The transpiration by the cuticle of leaf is called cuticular transpiration. Cuticule is a waxy layer which is made up of a lipid called cuties. ii. STOMATAL TRANSPIRATION The transpiration by the stomata of leaf is called stomatal transpiration. It is the most important type of transpiration because most of the water is lost in this transpiration (about 90%) STOMATA StomAta are microscopic pores which are found on the surface of leaves. NUMBER OF STOMATA ON SQ. MM OF LEAF Mostly 50-300 stomata are found on a square millimeter of leaf surface. But according to Eckerson (1908), 14 stomata / mm2 are found on the leaf of wheat. According to Yoccum (1935) 1038 stomata/ mm2 are 	K/A	D

_		SIZE OF STOAMATAL APERTURE WHEN IT IS FULLY OPEN:		
		• In <i>Phaseolus vulgare</i> the size of stomatal aperture is $7x3 \mu$.		
		 In Avena sativa its size is about 38 x 8 μ 		
		STRUCTURE OF STOMATA:		
		• Each stoma is an		
		opening between the two bean		
		shaped cells, called guard cells.		
		• The part of the cell of		
		guard cells adjacent to stoma is		
		hard and non-elastic, while the		
		part away from stoma is thin		
		and highly elastic.		
		• Inside the guard cell a		
		nucleus and many small		
		chloroplasts are present.		
		OPENING AND CLOSING		
		OF STOMATA:		
		• The opening and closing of stomata depends upon the turgidity of guard cells.		
		 According to Sayre (1923), in the presence of sunlight 		
		stomata are opened because in the presence		
		of light photosynthesis takes place in the guard cells.		
		• In this process CO2 is absorbed in the guard cells.		
		• CO2 is an acidic gas which decreases the pH of guard cells		
		and an enzyme (i.e. phosphorylase)		
		becomes active which converts starch into glucose 1-Phosphate.		
		• Glucose 1-Phosphate is highly soluble in water so it increases		
		the concentration of the solution in		
		the guard cells.		
		• Therefore endosmosis takes place in these cells. And finally		
		they become turgid.		
		• In turgid condition, the outer walls of guard cells move		
		outward while the inner walls more inward		
		and become concave.		
		• In this way, the passage between the two guard cells (stoma) is opened.		
		• In the absence of light the whole above sequence is reversed		
		and guard cells become flaccid. So the stoma is closed.		
		 In some plants the concentration of K + ions also plays an 		
		important role in this process. During the		
		day time the guard cells actively transport $K + ions$ from the		
		neighboring cells. Accumulation of K + ions		
		lowers the water potential of guard cells, so they intake water by		
		endosmosis.		
	ļ!		<u> </u>	
7.		NUTRITION:	K/A	E
	Mention and explain	Nutrition is a process by which the organisms obtain energy to		
	the two types of	maintain the function of life, to build the		
	nutrition with the help	matter and maintain the structure. Nutrients are food or any		
	of chemical equations.	substance which supplies elements and energy		
		to the living body for its metabolic activity.		
	1	 Autotrophic nutrition. Heterotrophic nutrition. 		

			<u>.</u>	
		AUTOTROPHIC NUTRITION		
		In this nutrition the organism has the ability to synthesize its		
		food inside the body. There are two types of		
		autotrophic nutrition.		
		1. Phototrophic Nutrition		
		2. Chemotrophic Nutrition		
		PHOTOTROPHIC NUTRITION:		
		The organisms which have the ability to convert solar		
		energy into food energy are called		
		phototrophic organisms and this nutrition is known as		
		phototrophic nutrition.		
		 Phototrophic organisms require green pigments i.e. 		
		chlorophyll a and chlorophyll-b to absorb		
		sunlight in the presence of this sunlight, these organisms		
		synthesize food energy in the form of simple		
		carbohydrates. This process is called photosynthesis.		
		6CO2 + 12H2O		
		Chlorophyll		
		Sunlight \longrightarrow C6H12O6 + 6H2O + 6 O2		
		Some bacteria are also capable to prepare their food by the		
		process of "Photosynthesis". These		
		bacteria were discovered by Von Neil in 1930. They contain		
		different type of chlorophylls which are called		
		bacterio-chlorophyll and chlorobium chlorophyll.		
		 ✤ In photosynthetic bacteria H2S gas is used instead of H2O. 		
		Therefore these bacteria release sulphur		
		during photosynthesis. Green sulphur bacteria and purple		
		sulphur bacteria are the examples of		
		photosynthetic bacteria.		
		$CO2 + 2H2S \longrightarrow light (CH2O)n + H2O + 2S$		
		CHEMOTROPHIC NUTRITION:		
		In this type of nutrition energy is produced by the oxidation of		
		certain inorganic substance such as		
		ammonia, nitrates, nitrites Ferrous ions etc. this energy is used		
		for the synthesis of carbohydrates. This		
		process food manufacturing is called chemosynthesis.		
		Example:		
		F. C.		
		1. $N_{H_4^+} + 3O_2 \longrightarrow 2NO_2^- + 2H2O + 4H^+ + Energy$		
		2. $2NO_2^- + O_2$ $2NO_3 + Energy$		
8.	Draw and describe the	LIFE CYCLE OF RHIZOPUS(Zygomycota)	K/A	Ε
	life cycle of	Asexual reduction takes place by spores and these spores are		
	Zygomycota or	produced during the favourable conditions.		
	Ascomycota fungi	1- ASEXUAL REPRODUCTION		
		i- SPORANGIOPHORES		
		At the time of reproduction the mycelium produces so many		
		erect hyphae, which are known as		
		sporangiophores.		
		ii- SPORANGIUM:		
		At the tip of each sporangiophore a rounded body appears, in		
		At the tip of each sporangiophore a rounded body appears, in which cytoplasm nuclei and oil		
		which cytoplasm, nuclei and oil		
		which cytoplasm, nuclei and oil droplets are transferred from the mycelium. Then this rounded		
		which cytoplasm, nuclei and oil droplets are transferred from the mycelium. Then this rounded body is differentiated into a		
		which cytoplasm, nuclei and oil droplets are transferred from the mycelium. Then this rounded		

and a lower smaller portion or columella. Sporangium is nucleated while the columella is nonnucleated. Page 55 iii. SPORES: Each nucleus of sporangium is surrounded by a small amount of cytoplasm and then it is coved by a wall. In this way numerous, unicellular bodies are developed inside the sporangium, which are known as spores. iv-DISPERSAL AND GERMINATION OF SPORES When the spores become mature inside the sporangium, the columella, starts to swell and applies a pressure on the sporangial wall, ultimately the sporangial wall sutures and all the spores are dispersed into the air these spores are very small in size, and they fall on organic matter of germinate to form new mycelia. 2 SEXUAL REPRODUCTION Sexual reproduction different the hyphae of different strains come close to each other. Then both of them produce small out growths (papillae) which grow and fused together. In this condition they are called progametangia. Each progametangium divides into two parts is due to the formation of a septum. The front part is gametangium and the part behind gametangium is called suspensor. The wall between the two gametangia is dissolved and the protoplasm of both gametangia is fuse to form a diploid (2n) zygote. The zygote produces a cyst around it to become a zygospore. This type of sexual reproduction is known as heterothallic conjugation. GERMINATION OF ZYGOSPOREI The zygospore germinates during the favourable conditions and forms an erect hypha or promycelium, on which sporangium is produced. Inside the sporangium haploid (n) spores are developed by meiosis, these spores are dispersed when the sporangial wall is ruptured and germinates to form new mycelia.	

		Cametangia with naploid nuclei Young Yugosporangium (heterokaryotic) Young Yugosporangium (heterokaryotic) Mating Yugo Sexual reproduction XARYOGAMY Mycelia Sporangium Germination MeiOSIS Spores Dispersal and reproduction Dispersal and germination Haploid (n) Mycelium MeiOSIS Diploid nuclei Mycelium Sporangium Mycelium Dispersal and germination Haploid (n)		
9.	Describe the life cycle of fern. Illustrate your answer with reference to alternation of generations.	 LIFE CYCLE OF FERN The life cycle of fern consists on two phases. Sporophyte phase (asexual reproduction) Gametophyte phase (sexual reproduction). SPOROPHYTE PHASE (Asexual Reproduction): The large leafy fern plant is the diploid sporophyte phase. The sporophyte of fern is a diploid body, consists of adventitious roots, underground stem (rhizome) and pinnately compound leaves. In these plants asexual reproduction takes place by spores, which are produced in sporangia located in clusters on the under side of some leaves, these leaves are called sporophylls. There are three types of sporophyll in ferns. Sporophylls looking like the non-reproductive leaves. Highly modified sporophylls, which do not look like leaves. Most advanced ferns are homosporous. After germination the spores develop into gametophytes, 	K/A	E

GAMETOPHYTE PHASE (Sexual Reproduction):
• The gametophyte of fern is a tiny (less than one centimeter
wide) and often more or less heart shaped.
• It is non-vascularized, free living and can survive only at
moist places.
• It bears two types of reproductive organs i.e. antheridia and
archegonia.
1:- Antheridia
• Antheridia are the male reproductive organs.
• Each antheridium is surrounded by a sterile jacket layer,
which encloses a number of antherozoid
mother cells.
• Each antherozoid mother cell forms two male gametes which
are called antherozoids or sperms.
2:- Archegonia
• Archegonia are the female reproductive organs.
• Each archegonium is a flask-shaped organ which is composed of a neck and a venter.
• Inside the neck few neck canal cells are present while the
venter keeps a venter canal cell and an
egg cell. The egg cell is the female gamete.
Fertilization:
• At the time of fertilization the sperms are liberated from the
antheridia and start to swim in water by
the help of flagella.
• Mean while the neck canal cells and the venter canal cell of
archegonium are degenerated and form
a mucilaginous fluid, this fluid is released from the
archegonium. It contains malic acid which attracts
the sperms towards the archegonium. So a large number of
sperms are entered into the venter, but
only one is succeeded to fuse with the egg cell to form a diploid
zygote
• The zygote germinates into a diploid sporophyte.

		MEIOSIS Spore Young gametophyle Antheridium Sporangium Archegonium Begg Sporn Mature Sporophyle Egg Sporn Vgote FERTILIZATION Haploid (n) Diploid (2n) Diploid (2n)	
10.	Define Photosynthesis. Describe light reaction	 LIGHT REACTION The initial information about light reaction was given by R. Hill in 1939. So the light reaction is called "Hill-Reaction". In light reaction there is no participation of CO2 but light is so essential. This is the first step of photosynthesis in which ATP and NADPH+H are synthesized which is utilized in the dark reaction. This process takes place on the thylakoid membrane. Four major complexes are present for the light reaction on this membrane; Photosystem I (PS-I) Photosystem II (PS-II) Cytochrome b/f complex ATPase complex In between these complexes electron acceptor molecules are also present. These electron acceptors are plastoquinone, plastocyanin and ferredoxin. 	

• The light dependent reactions that occurs in the thylakoid	
membranes require the participation of two	
light gathering units called photosystem-I (PS-I) and	
photosystem-II (PS-II). Both the photosystems contain an	
antenna complex or light harvesting complex. The light	
harvesting complex contains 200 to 300 pigment	
molecules and collects light energy. Different pigments collect	
light of different wavelengths, making the	
photosystem more efficient. All the energy is transferred from	
molecule to molecule and finally to a	
specialized form of chlorophyll-a known as P700 in PS-I and	
P680 in PS-II. Their absorption peaks are at	
wavelength of 700 nm and 680 nm respectively.	
EXPLANATION OF LIGHT REACTION:	
Arnon and his co-workers proposed a theory of Cyclic and	
Non-Cyclic Photophosphorylation.	
CYCLIC PHOTO PHOSPHORYLATION	
The cyclic electron pathway begins after the PS-I pigment	
complex absorbs solar energy. In this pathway,	
high energy electrons leave the PS-I reaction centre chlorophyll-	
a molecule but eventually return to it.	
Before they return, enter an electron transport system. The	
electron from P700 is passed to primary	
electron acceptor, then to ferredoxin (Fd), to the cytochrome b/f	
complex and from there continue on to the	
P700 chlorophyll. In cyclic photophosphorylation ATP is	
generated by the coupling of electron transport	
chain by chemiosmosis. There is no production of NADPH and	
oxygen.	
NON CYCLIC PHOTOPHOSPHORYLATION	
1. PHOTOSYSTEM-II AND 1ST ELECTRON	
TRANSPORT CHAIN: When light strikes the	
chlorophyll molecules, its energy causes an electron in the	
reaction centre chlorophyll P680 to be boosted.	
The electron is said to be excited because it posses greater	
energy than the normal one. The absorbed light	
energy causes the chlorophyll molecules of P680 to give up a	
pair of electrons. Each of the photo excited	
electrons passes from primary electron acceptor of PS-II i.e.	
pheophytin to PS-I via an electron transport	
chain. This chain consists of an electron acceptor molecule or	
plastoquinone (PQ), cytochrome-b (cyt-b),	
cytochrome-f (cyt-f) and a copper containing protein or	
plastocyanin (PC).	
2. PRODUCTION ATP: As electrons pass through the chain their	
energy goes on decreasing and is	
used by the thylakoid membrane to produce ATP from	
phosphate and ADP. This ATP generated by light	
reactions will provide chemical energy for the synthesis of	
sugar during Calvin cycle.	
3. PHOTOSYSTEM-I: When P700 molecule absorbs a photon	
of light. Electrons are boosted to a	
higher energy level. P700 molecule passes the electron to a	
primary electron acceptor, creating a "hole".	
The hole of P700 is filled by a pair of electrons received from	
the P680 via electron transport chain of PSII.	
the 1000 via electron transport chain of 1511.	

4. 2ND ELECTRON TRANSPORT CHAIN: The primary	
electron acceptor of PS-I passes the photoexcited	
electrons to a second electron transport chain. The electrons are	
accepted by ferredoxin (Fd). It is	
an iron containing protein. An enzyme called NADP reductase	
transfers the electrons from Ferredoxin to	
Page 100	
NADP+, which is combined with hydrogen ions to form	
NADPH+H+. The NADPH+H+ will provide	
reducing power for the synthesis of sugar in the calvin cycle.	
NADP+ + 2e- + 2H + → NADPH+H+	
5. PHOTOLYSIS OF WATER: The deficiency of electrons in	
PS-II is full filled by the electrons of	
water molecule. Each water molecules in the lumen of thylakoid	
splits into a pair of H+ ion, a pair of	
electrons and oxygen gas. This process is known as photolysis	
of water.	
$H2O \longrightarrow 2H + + 2e + \frac{1}{2}O2$	
6. CHEMIOSMOSIS: Energy released from electrons traveling	
through the chain of acceptors is used	
to pump protons $(H+ ions)$ from the stroma across the thylakoid	
membrane and into the thylakoid interior	
space (lumen). Moreover the photolysis of water also increases	
the concentration of protons $(H+ ions)$ in	
the lumen of thylakoid. Thus these factors results in the	
formation of a proton gradient across the thylakoid	
membrane. The gradient has a great deal of free energy because	
of its low entropy. The thylakoid	
membrane is impermeable to H+ ions except through certain	
channels formed by an enzyme called ATP	
synthase complex. When the protons flow out of the thylakoid	
space by the way of ATP synthase complex,	
energy is provided for the ATP synthase enzyme to produce	
ATP form ADP and Pi. This is called	
chemiosmotic ATP synthesis. The transport of three protons	
through the ATPase complex is normally	
required for the production of one ATP molecule.	
required for the production of one Arr morecule.	